

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 72-76 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02117276 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 72

Security Using Facial Recognition

Pratham
Student, Guru Govind Singh Indraprastha University, Dwarka, Delhi

Student, Maharaja Agrasen Institute of Technology, Rohini Sec 22, Delhi.

Date of Submission: 05-12-2020 Date of Acceptance: 20-12-2020

--

ABSTRACT: This research paper is about

“security using facial recognition” the objective of

the project is to provide user an algorithm which

will detects the face of the user and unlock the

applications or website‟s according to that.

It will first take the training data as an input from

the camera of the device and then will train the

model from the input and will detect the face

according to that training of the model.

The training of the data will be done using LBPH

facial recognition algorithm.

To work on the project, we will use Facial

Recognition Technique in the project.

KEYWORDS: Secuity, facial recognition, LBPH

algorithm, Machine learning, haarcascade.

I. INTRODUCTION
[1]Security is a state where an

environment is secured from malicious intent. The

implementation of security is widely used from

personal computer to user‟s smartphone. The

development of security has changed significantly

over the years, from simple passcode to using

user‟s biometric features to give security. The

advance technology in present day has made it

possible to integrate biometric security with

smartphones. However, there remains two

problems when biometric security is to be

implemented on mobile application. First, some

biometric security requires external tools and these

tools are mostly expensive. Second, most existing

applications on the Android Market namely

FaceLock[2] does provide user with Face

Recognition features to secure access for their

applications, Although, the non-paid version only

allows user to lock only one applications, and for

full function of the application, the user is required

to pay for it. As a result, the user may not receive

full functioning biometric security they require.

Thus, an application called “Authentication Lock

for Application Integration” are created to satisfy

user‟s needs for biometric security for no payment.

Authentication Lock for Application Integration is

developed to enable face recognition security for

user and secure their applications from

unauthorized user. Authentication Lock has slight

advantage over FaceLock in term of availability

and functionality, the application is always

available running in the background to provide

security and to keep track of the locked application.

In order to understand how Face

Recognition works, let us first get an idea of the

concept of a feature vector. Every Machine

Learning algorithm takes a dataset as input and

learns from this data. The algorithm goes through

the data and identifies patterns in the data. For

instance, suppose we wish to identify whose face is

present in a given image, there are multiple things

we can look at as a

pattern:

 Height/width of the face.

 Height and width may not be reliable since the

image could be rescaled to a smaller face.

However, even after rescaling, what remains

unchanged are the ratios – the ratio of height

of the face to the width of the face won‟t

change.

 Color of the face.

 Width of other parts of the face like lips, nose,

etc.

Clearly, there is a pattern here – different

faces have different dimensions like the ones

above. Similar faces have similar dimensions. The

challenging part is to convert a particular face into

numbers – Machine Learning algorithms only

understand numbers. This numerical representation

of a “face” (or an element in the training set) is

termed as a feature vector. A feature vector

comprises of various numbers in a specific order.

As a simple example, we can map a “face” into a

feature vector which can comprise various features

like:

 Height of face (cm)

 Width of face (cm)

 Average colour of face (R, G, B)

 Width of lips (cm)

 Height of nose (cm)

This

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 72-76 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02117276 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 73

II. WORK FLOW OF SECURITY USING

FACIAL RECOGNITION
There will be two modules in this project namely

“Mod1” and “Mod2”.

In the first module by the use of OpenCV library

of Python:-

1. We will define the “Haarcascade_frontal_face”

classifier as the face classifier to detect only the

front face of the user for the face lock not

background or any other feature

2. We will initialize webcam using“

cv2.VideoCapture(0)”.

3. We will start capturing images by converting it

into “black and white color” and we will crop the

image too

4. If face is detected according to face classifier

then it will capture the image otherwise “Face Not

Found” will be shown .

5. This process will go until 1000 pics are captured

or enter key is pressed.

6. Store Pics to given path.

Mod2:-
1. Define the path where pics are and then read and

load pics using cv2.imread() method.

2. Define the model which we have selected as “

cv2.face.LBPHFaceRecognizer_create()”.

3. Train the training data on this model

using model.train().

4. Initialize webcam again and again do same

cropping and converting of image into black and

white.

5. Use “Haarcascade_frontal_face” classifier to

detect and capture the face.

6. Use the captured image to predict whether the

face matched with the training data or not.

7. If confidence is above 85% then “UNLOCK”

otherwise “LOCKED”.

8. “Enter“ Key is used to exit.

Figure 1 : Work flow of Module 1

Figure 2: Work flow of Module 2

III. LBPH ALGORITHM
Human beings perform face recognition

automatically every day and practically with no

effort.

Although it sounds like a very simple task

for us, it has proven to be a complex task for a

computer, as it has many variables that can impair

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 72-76 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02117276 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 74

the accuracy of the methods, for example:

illumination variation, low resolution, occlusion,

amongst other.

In computer science, face recognition is

basically the task of recognizing a person based on

its facial image. It has become very popular in the

last two decades, mainly because of the new

methods developed and the high quality of the

current videos/cameras.

Note that face recognition is different of face

detection:

 Face Detection: it has the objective of finding

the faces (location and size) in an image and

probably extract them to be used by the face

recognition algorithm.

 Face Recognition: with the facial images

already extracted, cropped, resized and usually

converted to grayscale, the face recognition

algorithm is responsible for finding

characteristics which best describe the image.

The face recognition systems can operate basically

in two modes:

 Verification or authentication of a facial

image: it basically compares the input facial

image with the facial image related to the user

which is requiring the authentication. It is

basically a 1x1 comparison.

 Identification or facial recognition: it basically

compares the input facial image with all facial

images from a dataset with the aim to find the

user that matches that face. It is basically a

1xN comparison.

There are different types of face recognition

algorithms, for example:

 Eigenfaces (1991)

 Local Binary Patterns Histograms

(LBPH) (1996)

 Fisherfaces (1997)

 Scale Invariant Feature Transform

(SIFT) (1999)

 Speed Up Robust Features (SURF) (2006)

Each method has a different approach to extract

the image information and perform the

matching with the input image. However, the

methods Eigenfaces and Fisherfaces have a

similar approach as well as the SIFT and SURF

methods.

Today we going to talk about one of the

oldest (not the oldest one) and more popular face

recognition algorithms: Local Binary Patterns

Histograms (LBPH).

Local Binary Pattern (LBP) is a simple yet

very efficient texture operator which labels the

pixels of an image by thresholding the

neighborhood of each pixel and considers the result

as a binary number.

It was first described in 1994 (LBP) and

has since been found to be a powerful feature for

texture classification. It has further been

determined that when LBP is combined with

histograms of oriented gradients (HOG) descriptor,

it improves the detection performance considerably

on some datasets.

Using the LBP combined with histograms

we can represent the face images with a simple data

vector.

As LBP is a visual descriptor it can also be used for

face recognition tasks, as can be seen in the

following step-by-step explanation.

Now that we know a little more about face

recognition and the LBPH, let‟s go further and see

the steps of the algorithm: [3]

1. Parameters: the LBPH uses 4 parameters:

 Radius: the radius is used to build the circular

local binary pattern and represents the radius

around the central pixel. It is usually set to 1.

 Neighbors: the number of sample points to

build the circular local binary pattern. Keep in

mind: the more sample points you include, the

higher the computational cost. It is usually set

to 8.

 Grid X: the number of cells in the horizontal

direction. The more cells, the finer the grid, the

higher the dimensionality of the resulting

feature vector. It is usually set to 8.

 Grid Y: the number of cells in the vertical

direction. The more cells, the finer the grid, the

higher the dimensionality of the resulting

feature vector. It is usually set to 8.

Don‟t worry about the parameters right

now, you will understand them after reading the

next steps.

2. Training the Algorithm: First, we need

to train the algorithm. To do so, we need to use a

dataset with the facial images of the people we

want to recognize. We need to also set an ID (it

may be a number or the name of the person) for

each image, so the algorithm will use this

information to recognize an input image and give

you an output. Images of the same person must

have the same ID. With the training set already

constructed, let‟s see the LBPH computational

steps.

3. Applying the LBP operation: The first

computational step of the LBPH is to create an

intermediate image that describes the original

image in a better way, by highlighting the facial

characteristics. To do so, the algorithm uses a

concept of a sliding window, based on

the parameters radius and neighbors.

http://www.scholarpedia.org/article/Eigenfaces
https://en.wikipedia.org/wiki/Local_binary_patterns
https://en.wikipedia.org/wiki/Local_binary_patterns
http://www.scholarpedia.org/article/Fisherfaces
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Speeded_up_robust_features

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 72-76 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02117276 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 75

The image below shows this procedure:

Figure 3: LBPH algorithm uses a concept of a

sliding window, based on

the parameters radius and neighbors.

Based on the image above, let‟s break it into

several small steps so we can understand it easily:

 Suppose we have a facial image in grayscale.

 We can get part of this image as a window of

3x3 pixels.

 It can also be represented as a 3x3 matrix

containing the intensity of each pixel (0~255).

 Then, we need to take the central value of the

matrix to be used as the threshold.

 This value will be used to define the new

values from the 8 neighbors.

 For each neighbor of the central value

(threshold), we set a new binary value. We set

1 for values equal or higher than the threshold

and 0 for values lower than the threshold.

 Now, the matrix will contain only binary

values (ignoring the central value). We need to

concatenate each binary value from each

position from the matrix line by line into a new

binary value (e.g., 10001101). Note: some

authors use other approaches to concatenate

the binary values (e.g., clockwise direction),

but the final result will be the same.

 Then, we convert this binary value to a

decimal value and set it to the central value of

the matrix, which is actually a pixel from the

original image.

 At the end of this procedure (LBP procedure),

we have a new image which represents better

the characteristics of the original image.

 Note: The LBP procedure was expanded to use

a different number of radius and neighbors, it

is called Circular LBP.

Figure 4: Diagram showing the number

of pixels around the central pixel with the size of

sliding window

 It can be done by using bilinear interpolation. If

some data point is between the pixels, it uses the

values from the 4 nearest pixels (2x2) to estimate

the value of the new data point.

4. Extracting the Histograms: Now, using the

image generated in the last step, we can use

the Grid X and Grid Y parameters to divide the

image into multiple grids, as can be seen in the

following image:

Figure 5: Diagram showing the formation of

histogram from the the X and Y grids which is

obtained from the LBP result

Based on the image above, we can extract the

histogram of each region as follows:

 As we have an image in grayscale, each

histogram (from each grid) will contain only

256 positions (0~255) representing the

occurrences of each pixel intensity.

 Then, we need to concatenate each histogram

to create a new and bigger histogram.

Supposing we have 8x8 grids, we will have

8x8x256=16.384 positions in the final

histogram. The final histogram represents the

characteristics of the image original image.

The LBPH algorithm is pretty much it.

5. Performing the face recognition: In this step, the

algorithm is already trained. Each histogram

created is used to represent each image from

the training dataset. So, given an input image,

we perform the steps again for this new image

and creates a histogram which represents the

image.

 So to find the image that matches the input

image we just need to compare two histograms

and return the image with the closest

histogram.

 We can use various approaches to

compare the histograms (calculate the distance

between two histograms), for

example: euclidean distance, chi-square, absolute

value, etc. In this example, we can use the

Euclidean distance (which is quite known) based

on the following formula:

 So, the algorithm output is the ID from the

image with the closest histogram. The

algorithm should also return the calculated

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 72-76 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02117276 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 76

distance, which can be usedas a „confidence‟

measurement. Note: don‟t be fooled about the

„confidence‟ name, as lower confidences are

better because it means the distance between

the two histograms is closer.

 We can then use a threshold and the

„confidence‟ to automatically estimate if the

algorithm has correctly recognized the image.

We can assume that the algorithm has

successfully recognized if the confidence is

lower than the threshold defined.

IV. RESULT AND OUTPUT
As discussed that this project has two

modules named Mod1 and Mod2. Mod1 will

capture and store the 1000 images of user after

extracting the frontal face only. Each and every

image will be stored with a unique name in the

local memory.

These 1000 images will be used in Mod2

as the training data. After completion of training, a

window will pop up that try to match the face of

user with the training result.

If our model finds the face and that particular face

match with the trained data then it will show the

Unlocked message else Locked.

Also, this module prints the accuracy of our model

as well i.e., in this particular case our model is 91%

sure that it‟s user.

Figure 6: Diagram showing the final result of the

project with the accuracy ie., 91% in that particular

case

V. CONCLUSION AND FUTURE SCOPE
1000 images that has been captured in

Mod1 will be used in Mod2 as the training data.

After completion of training, a window will pop up

that try to match the face of user with the training

result. After testing the project several times the

accuracy was found to be 91% average which is

excellent.

This project provides the vast

opportunities of changes it. We can implement this

security mechanism in website and apps. Extension

and managing this project are quite easy as we can

implement age, gender classification also.

We can also implement the face expression

classification in this project which will provide

more flexibility of our project as it will only unlock

our application when normal expression found.

REFERENCES
[1]. Authentication Lock for Application

Integration Face Recognition Security

Muhammad Aliff Romi Bin Sharipudin,

Firoz bin Yusuf Patel Dawoodi

[2]. Faclock.mobi, “Facelock”, Facelock.mobi.

[online] Available at

http://www.facelock.mobi/ [Accessed: May

15,2017]

[3]. https://towardsdatascience.com/face-

recognition-how-lbph-works-90ec258c3d6b

https://towardsdatascience.com/face-recognition-how-lbph-works-90ec258c3d6b
https://towardsdatascience.com/face-recognition-how-lbph-works-90ec258c3d6b

